본문
제품 정보
Incorporating Prior Function Belief into Neural Networks through Dropout and Negative Correlation Learning
Date | 2023.08.09 |
---|---|
Speaker | 이형권 |
- 이전글Embedded local feature selection within mixture of experts 23.08.11
- 다음글Domain Adaptation for Regression 23.08.10
Topic:
Incorporating Prior Function Belief into Neural Networks through Dropout and Negative Correlation Learning
keywords:
Dropout
Bayesian Approximation
Gaussian Process
Model Uncertainty
Negative Correlation Learning
generalization
Reference:
Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research 15.1 (2014): 1929-1958.
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Int. Conf. Mach. Learn. 48,1050–1059 (2016).
Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural networks, 12(10), 1399-1404.
첨부파일
-
Incorporating Prior Function Belief into Neural Networks through Dropout and Negative Correlation Learning.pdf (739.6K)
24회 다운로드 | DATE : 2023-08-10 15:09:34
관련링크
저작자표시-비영리-동일조건변경허락(BY-NC-SA)
저작자와 출처 등을 표시하면 저작물의 변경, 2차적 저작물의 작성을 포함한 자유이용을 허락합니다.
단 영리적 이용은 허용되지 않고 2차적 저작물에는 원저작물에 적용된 라이선스와 동일한 라이선스를 적용해야 합니다.